46 research outputs found

    Automatic generation of equivalent architecture model from functional specification

    Full text link
    This paper presents an algorithm for automatic generation of an architecture model from a functional specification, and proves its correctness. The architecture model is generated by distributing the intended system functionality over various components in the platform architecture. We then define simple transformations that preserve the execution semantics of system level models. Finally, the model generation algorithm is proved correct using our transformations. As a result, we have an automated path from a functional model of the system to an architectural one and we need to debug and verify only the functional specification model, which is smaller and simpler than the architecture model. Our experimental results show significant savings in both the modeling and the validation e#ort

    Automatic Generation of Transducer Models for Bus-Based MPSoC Design

    Get PDF
    This paper presents methods for automatic generation of models of Transducer, a highly flexible communication module for interfacing Multiprocessor System-on-Chip (MPSoC) components. We describe the transducer architecture, comprising the bus interface, high-level communication controllers and buffer management blocks. The well-defined architecture of the transducer enables automatic generation of its Transaction-level and Register-transfer level (RTL) models. Moreover, the simple interface of the transducer provides for a well-defined software interface, making it easy to update the software after changes in MPSoC platform. Our experimental results show that MPSoC design for industrial-size applications, such as MP3 decoder and JPEG encoder, greatly benefits from automatic generation of transducer models. We found productivity gains of 9-23× due to significant savings in modeling effort. On the quality axis, we show that MPSoC communication design using automatically generated transducers has very little overhead in communication delay over a fully connected point-to-point communication architecture. Finally, we show that our automatically generated TLMs greatly reduce the system-level modeling time and provide a fast executable model for early functional validation

    Automated generation of custom processor core from C code

    Get PDF
    We present a method for construction of application-specific processor cores from a given C code. Our approach consists of three phases. We start by quantifying the properties of the C code in terms of operation types, available parallelism, and other metrics. We then create an initial data path to exploit the available parallelism. We then apply designer-guided constraints to an interactive data path refinement algorithm that attempts to reduce the number of the most expensive components while meeting the constraints. Our experimental results show that our technique scales very well with the size of the C code. We demonstrate the efficiency of our technique on wide range of applications, from standard academic benchmarks to industrial size examples like the MP3 decoder. Each processor core was constructed and refined in under a minute, allowing the designer to explore several different configurations in much less time than needed for manual design. We compared our selection algorithm to the manual selection in terms of cost/performance and showed that our optimization technique achieves better cost/performance trade-off. We also synthesized our designs with programmable controller and, on average, the refined core have only 23% latency overhead, twice as many block RAMs and 36% fewer slices compared to the respective manual designs

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    DEDICATION

    No full text
    in qualit

    Automatic generation of equivalent architecture model from functional specification

    No full text
    This paper presents an algorithm for automatic generation of an architecture model from a functional specification, and proves its correctness. The architecture model is generated by distributing the intended system functionality over various components in the platform architecture. We then define simple transformations that preserve the execution semantics of system level models. Finally, the model generation algorithm is proved correct using our transformations. As a result, we have an automated path from a functional model of the system to an architectural one and we need to debug and verify only the functional specification model, which is smaller and simpler than the architecture model. Our experimental results show significant savings in both the modeling and the validation effort
    corecore